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Project Objectives

� Quantify spray water cooling heat transfer rate
� by interpretating steady experiments with computational modeling� by interpretating steady experiments with computational modeling

� Improve secondary-cooling zone temperature-prediction in 
continuous-casting of steel
� CON1D, CONONLINE
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� Better control of steel quality
� Uniformly-distributed temperature in slab



Schematic of Experiment Setup

• Induction heating is used to heat 
up platinum sample
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up platinum sample

• Power controller is used to maintain 
sample temperature at a specific value

Setup Details

Side View
TC Wire

Cylinder Plastic 
CoverSpray Nozzle

Top View

Ceramic Body

Box and SampleY

X

Z Platinum Sample

Copper Coil

Quartz Glass
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Induction Copper Coil

Top View Side View
TC Wires

• Plastic cover and quartz glass are used   
to keep spray water from ceramic body, 
only exposing front surface of platinum 
sample to the water 



Steady Spray Cooling Experiments

Experiment procedure:

� Pt sample is induction-heated with sample TC  temperature (Ts) controlled in 
stages of 100, 200, …, 1100, 1200, 1100, …, 200, 100 oC. Each Ts stage stages of 100, 200, …, 1100, 1200, 1100, …, 200, 100 oC. Each Ts stage 
takes 8 min.

� Two types of experiments: 
� wet (spray is on)
� dry (spray is off)

Heating Cooling
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� Sample locations during spraying:

Typical Ts and I tot Measurements from

Wet Experiment
Water Flow Rate=4.6lpm, Air Flow Rate=104lpm,Nozzle Centered (June 26, 09)

Total current measurement approaches steady 
state at the end of the 8 min for each stage 
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25 s
20 s

Sample temperature Ts=300 C



Typical Ts and I tot Measurements from

Dry Experiments
Water Flow Rate=0 lpm, Air Flow Rate=0 lpm,Nozzle Centered (July-31, 09)

Sample Temperature, oC
Total Current, ATotal Current, A
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•Each sample temperature stage takes 5 min.
•Steady total current stays almost the same for heating and cooling, no hysteresis presented.

Induction Heating  Modeling 

1 T∂

Heat conduction equationElectromagnetics equation
Induced current density, J ind

A Magnetic potential

ω angular frequency

µ permeability

21
( )A A Jextj Tωσ

µ
− ∇ = − + ( ( ) )p

T
C k T T Q

t
ρ ∂ = ∇ • ∇ +

∂

Q (Heat Source) Material Type

0 Non-conductive
(air, ceramic, water)

Total current density, J tot 
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µ

ε permittivity 

σ electrical conductivity

j Complex unit square root of -1

|J tot |2/(2σ(T)) Conductive, with Jext  
(copper coil) 

|J ind |2/(2σ(T)) Conductive, without Jext
(platinum)

� Two equations are fully coupled via T andA

� Commercial package COMSOL is chosen to do simulation



R=13.5

60

Aθ=0
h=10W/m2K

Modeling Domains  
and Boundary Conditions

Unit: mm

2D Axi -symmetric model 
40

Copper Coil

Ceramic 
Body

120Axial
symmetry

Axial
symmetry

h=10W/m2K

Aθ=0

2D Axi -symmetric model 

• Induction coil shape is complicated

Magnetics Domain Heat Transfer
Domain
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2.5

Thermocouple

4 1

Ri=5.5

1.67

0.5

Platinum
Sample

r

z

θ

0.8
Quartz 

Glass Window

h_spray h_front

h_cw

Aθ=0

spray

• Induction coil shape is complicated
• It consists of 1.5 loops
• Model needs calibration

Specific Heat Density Electrical Conductivity Thermal Conductivity

Table. 1 Electrical and Thermal Material Properties*

Materials Properties

Specific Heat 
(J/kg·K)

Density 
(kg/m3)

Electrical Conductivity 
(1/m·ohm)

Thermal Conductivity
(W/m·K)

Copper 385 8960 5.7×107/(1+0.0039(T-20)) 400 (25 oC~150 oC)
Platinum 133 21450  9.6×106/(1+0.0038(T-20)) 71.86+0.0015T+1.0118×10-5T2

Water 4187 988 0 ---
Ceramic 740 1762 0 ???

•Ceramic thermal conductivity is missing, which requires model calibration too.
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Temperature, oC 100 500 1000 1500
Emissivity 0.05 0.1 0.15 0.19

Table. 2 Temperature-dependent Platinum Emissivity*

*http://www.platinummetalsreview.com 



Model Calibration by Dry Experiment 
to Decide R i and k ceramic (T)

Calibration to obtain 
ceramic thermal conductivity kceramic(T)
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Measured Current

• Ri=5.8, 5.5 and 5.0 mm chosen to do transient simulation 
for dry experiment from 700 oC to 800 oC.

• R =5.5 mm gives the best match of temperature with 
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1. Comparison between TC measurement and prediction 
from transient dry experiment simulation.

2. good match; Ri=5.5mm and kceramic(T) are good to use.

• Ri=5.5 mm gives the best match of temperature with 
transient measurement

� Ri=5.5mm used in calibrating model to get kceramic
� kcermaic(T) is obtained by matching each TC 

measurement from 100 oC to 1200 oC in steady state 
dry experiment simulation.

Side Experiment for Validating 
Calibrated Ceramic Thermal Conductivity 

� Cylindrical ceramic body resting on a thin 
metallic sheet 

� Sheet is heated up by a Bunsen burner
� Top surface is exposed to natural convection 

in the laboratory environment
� The lateral surface is isolated

TC Location, mm TC Location mm

1 3 5 20

2 5 6 25

3 10 7 30

4 15 8 40

� The lateral surface is isolated
� Steady temperature profile along the axis is 

measured by 9 TCs 
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Side Experiment Modeling and 
Validation Results
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Example Case Modeling to Extract HTC

• Methodology:
– steady-state simulation
– adjust h_spray to match temperature prediction with TC – adjust h_spray to match temperature prediction with TC 

measurement

• Conditions
– Ts=700 oC
– total current = 484.6 A
– h_spray       = 7100 W/m2K
– h_cw           = 2.96e4 W/m2K
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– h_cw           = 2.96e4 W/m2K
– h_front        = 5500 W/m2K
– nozzle

• water flow rate = 4.6lpm
• air flow rate      = 104lpm
• position:           X=0mm, Y= 0mm (centered), Z=0mm



Magnetic Potential Distribution 
and Total Current Distribution

Magnetic potential distribution Total Current distribution
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•Magnetic potential radiates away from the region of 
high current flow which caused it

•Magnetic potential can only penetrate into the sample
at a very small distance ~ 0.4mm (skin depth)

•Induced current is stronger at the right side of the sample,
while total current is stronger at the left side of the coil.

Heat Source Distribution 
and Temperature Distribution

Temperature distributionHeat Source distribution

690
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C
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Heat Generated, W Heat Out, W

Sample 264.49
Spray 229.14

Coil 206.22

Coil 186.19
Window 14.96

Natural convection 0.44

Total 450.68 Total 450.76



Nozzle Centered
Spray Heat Transfer Coefficients

Y=0mm(Nozzle Centered)
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•Increasing water flow rate increases heat transfer coefficient.
•During heating, HTC peaks around 150~200 C, then decreases as sample surface increases
•During cooling, HTC keeps increasing gradually.
•Hysteresis is shown in heat transfer coefficient curves. HTC is independent of temp at  temp >850 C

0

2

4

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Sample Surface Temperature, C

S
pr

ay
 H

ea
t T

ra
ns

fe
r 

C
oe

ffi
ci

en
t, 

kW
/m

^2
K

Nozzle Centered--Spray Heat Flux

Y=0mm(Nozzle Centered)
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•Increasing water flow rate increases spray heat flux.
•Spray heat flux also shows hysteresis
•Leidenfrost temperature is around 850 oC
•Steady measurement gives higher heat flux than transient measurement

0.0

0.5

1.0

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Sample SurfaceTemperature, C

--Transient results by Sami Vapalahti, etc, 
Spray Heat Transfer Research at CINVESTAC,
P26, CCC report, 2007



Mechanism of Hysteresis

sample

Water Layer

Steam Layer

sampleWater Layer

Spray Droplet

Fig. 1

Water Layer

Fig. 2
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•Heating process: 
•spray droplet impinges on water layer,  touches sur face, boils, and takes heat away. (Fig. 1)
•High heat removal keeps surface cold.

•Cooling process:
•At high sample surface temperature (>~860oC), a sta ble steam layer forms on the sample surface. (Fig. 2)
•This steam layer acts as a barrier to heat transfer  and decreases heat removal.
•Low rate of heat removal sustains the air gap to lo w temperatures before droplets finally can penetrat e through

•Result: difference in heat transfer at intermediate  temperatures according to history (heating or cool ing)

Fig. 1 Fig. 2

Nozzle Water Flow Rate=4.6lpm
--Spray Heat Transfer Coefficients
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•Hysteresis exists for different location from spray centerline.
•Moving further away from spray centerline decreases HTC.
•Difficult to correlate water flow rate footprint measurements with HTC. 
•More details of spray dynamics needed (droplet distribution, size, velocity, etc, --collaboration work 
at CINVESTAV, Mexico)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
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00

0 3 6 9 12 15 18
Y Direction,mm



Nozzle Water Flow Rate=4.6lpm
--Spray Heat Flux
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•Moving further away from spray centerline decreases spray heat flux
•Hysteresis is shown in heat flux curves
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Nozzle Water Flow Rate=2.5lpm
--Spray Heat Transfer Coefficients
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•Location closer to the center gives higher heat transfer coefficient.
•Hysteresis is shown in spray heat transfer coefficient curves



WaterFlowRate=2.5lpm

3.0

3.5

Nozzle Water Flow Rate=2.5lpm
--Spray Heat Flux

0.5

1.0

1.5

2.0

2.5

S
pr

ay
 H

ea
t F

lu
x,

 k
W

/m
^2

Y=0mm,Heating

Y=0mm,Cooling

Y=9mm,Heating

Y=9mm,Cooling

_____________________________________________________________________________________________________________________________________________

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab •     Xiaoxu Zhou 23

0.0

0.5

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Sample Surface Temperature, C

Y=18mm,Heating

Y=18mm,Cooling

•Location closer to the center gives higher spray heat flux
•Hysteresis is shown in heat flux curves

• This report presents a new technique combining experimental measurements with 
computational modeling to obtain local heat fluxes of water spray cooling a 
platinum sample for various nozzle operating conditions.

Conclusions 
for Experiments and Modeling

• Apparatus (induction heating) was modeled for 23 sample temperatures in each 
heating-cooling cycle. 

• Spray heat transfer coefficient and heat flux curves for 3 different nozzle operating 
condition and 3 different positions from the spray centerline are shown in the 
report. Heat transfer coefficient varies from 2000W/m2K to 35000W/m2K. Heat flux 
varies from 0.5MW/m2 to 6MW/m2.
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• Total power loss to the ambient air and the front quartz glass window is relatively 
low (less than 8% of total heat generated).  

• The fraction of power going to the spray is around 45~55%.



Conclusions for Practical Results

• Both spray heat transfer coefficient and spray heat flux show hysteresis which 
likely is related to formation of vapor layer on the sample surface.

• The Leidenfrost temperature (minimum heat flux) is around 840~860 oC for 
platinum.

• The Leidenfrost temperature (minimum heat flux) is around 840~860 C for 
platinum.

• Heat transfer coefficient around surface temperature 100~600 oC for heating 
is much larger (20~50%) than that during cooling, for all operating conditions 
studied.

• Increasing water flow rate increases spray heat transfer coefficients and spray 
heat fluxes by 10~60%, for the same nozzle position .

• Moving further away (9mm, 18mm) from the spray centerline decreases spray 
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• Moving further away (9mm, 18mm) from the spray centerline decreases spray 
heat transfer coefficients and fluxes by 10~70%, for the same nozzle 
operating condition.  The decrease is more gradual than the drop in water flow 
would suggest.

• Heat transfer coefficient decreases as the sample surface temperature goes 
from 200 oC to 1200 oC, while increasing from 1200 to 100 oC during cooling.

Plant Observations and Measurements Plant Observations and Measurements 
Compared with Prediction by CON1D

Xiaoxu Zhou
Brian G. Thomas
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Brian G. Thomas

Department of Mechanical Science and Engineering
University of Illinois at Urbana-Champaign



Plant Measurements at Nucor
(Whale and Pyrometer Measurements)

Case 1 Case 2 Case 3

Casting Speed (ipm) 146 157 146

Three cases of whale / no whale
(Nucor Dec 9, 2003)

Two cases of pyrometer measurements
(Case 4-1, low spray; Case 4-2, high spray)

(Nucor Jan 13, 2006)
A. Caster operation conditions

Casting Speed (ipm) 146 157 146

Spray Pattern 1 1 6  (less water )

Plant
Observation

No 
Whale

No
Whale

Whale

Parameter Value

Time Jan. 13, 2006, 16:10-16:40 hrs.

Casting Speed 142.1 ipm (3.61 m/min)

Spray Pattern Pattern 4 (low spray) , 7 ( high spray)

Caster South

Pouring Temp 1547.8 oC

B. Pyrometers locations

C. Experimental data*
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Pyrometer Distance from Meniscus, 
mm

1 3866.1

2 6015.3

3 8380.0

4 11385.0

5 13970.0

B. Pyrometers locations

*Amar’s CCC annual meeting 2006

Simulation Details

Note:

• Wedged-hat spray heat transfer coefficients are used *

• Spray widths come from Sami’s experimental footprint measurements*

• Measured mold heat flux from the Nucor plant is used

Spray HTC tuning parameters

z1   z2   z3   h1   h2   h3

0.08 0.50 0.92 0.20 1.50 0.20

0.20 0.50 0.80 0.30 1.90 0.30

0.35 0.50 0.65 0.60 2.10 0.60

spray     

width  length 

(m)      (m)   

1.640  0.078  

0.987  0.148  

0.987  0.160   

• Measured mold heat flux from the Nucor plant is used

• Superheat=0(no superheat flux, but initial temperature starts from pouring temperature)

Calibrated spray HTC functions
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0.35 0.50 0.65 0.60 2.10 0.60

0.20 0.50 0.80 0.70 2.20 0.70

0.40 0.50 0.60 0.50 1.80 0.50

0.12 0.50 0.88 0.20 1.00 0.20

0.30 0.50 0.70 0.20 1.00 0.20

0.987  0.160   

1.008  0.170  

1.620  0.176  

1.680  0.204  

1.680  0.212 

*Sami Vapalahti, 2006 CCC Meeting Report: Delavan Nozzle Characterization at CINVESTAV



Whale Formation Prediction by CON1D

Case 3

Whale

Scale Surface Temp

Shell ThicknessWhale

Case 2

No Whale

Shell Thickness

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab •     Xiaoxu Zhou 29

No Whale

Scale Surface Temp

Shell Thickness

Whale Formation Prediction by CON1D

Scale Surface Temp

Case 1

No Whale

Scale Surface Temp

Shell Thickness
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Strand Surface Temperature Prediction by CON1D and 
Comparison with Measurements (black dots)

Case 4-1
(low spray) Scale Surface Temp

Shell Thickness

Measurements
∆T=120oC

∆T=80oC
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Case 4-2
(high spray)

Scale Surface Temp

Shell Thickness

Measurements
∆T=130oC

∆T=90oC

Discussion

• Good match with observation of whale formation.

• Good match with last three pyrometers.• Good match with last three pyrometers.

• Bad match with the first two pyrometers, may due to 

dense steam.

• Possible method to make simulation match better:
• Include a scale layer in CON1D

• scale layer is always observed in casting,
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• scale layer is always observed in casting,

• scale layer decreases heat transfer rate, increases metallurgical length,

• scale layer surface temperature should be lower than steel surface temperature,

• lower scale surface temperature and longer metallurgical length is favorable in

the current simulations.

• scale effect is studied in the next talk.



Spray HTC Comparison
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Avg_0.18 L/m^2s  (W19822)
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4.6lpm 1050C

4.6lpm 1150C

2.5lpm  950C

2.5lpm 1050C

2.5lpm 1150C
4.6lpm_Nozaki Prediction

2.5lpm_Nozaki Prediction

0.26 L/m^2s

11.6 
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• Measured spray heat transfer coefficients (HTC) from CINVESTAV are compared with those used by CON1D in case 3.
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• Measured spray heat transfer coefficients (HTC) from CINVESTAV are compared with those used by CON1D in case 3.
• Most measured spray HTCs lie in the range of what used by in case 3, except HTCs from 4.6lpm experiments at the
spray centerline and one HTC from 4.6lpm at the surface temperature of 950 oC.  

• High spray HTCs for 4.6lpm at the spray centerline is mainly caused by the high impact water density (20.18L/m2s). 
• The shape of measured HTCs follow the shape of what are used in CON1D, except the ones from 4.6lpm at 950 oC.
• Besides impact water density, such parameters as spray water pressure, air pressure, nozzle type and nozzle standing
distance also make difference between measured spray HTCs and those used in CON1D.

• Spray HTCs predicted by Nozaki equation lie in the range of what is used in CON1D.

Spray Heat Flux Comparison
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Summary

• Calibrated spray HTC functions in CON1D are able to 
match whale observations and the last three pyrometers 
measurements, but not do well in matching the first two measurements, but not do well in matching the first two 
pyrometer measurements.

• Most measured spray HTCs lie in the range of what are 
used by in case 3, except HTCs from 4.6lpm 
experiments at the spray centerline and one HTC from 
4.6lpm at the surface temperature of 950oC.  

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab •     Xiaoxu Zhou 35

4.6lpm at the surface temperature of 950oC.  

• The shape of measured HTCs follow the shape of what 
used in CON1D, except the ones from 4.6lpm at 950 oC.
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